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Abstract— The incorporation of macro-actions (temporally
extended actions) into multi-agent decision problems has the
potential to address the curse of dimensionality associated with
such decision problems. Since macro-actions last for stochastic
durations, multiple agents executing decentralized policies in
cooperative environments must act asynchronously. We present
an algorithm that modifies generalized advantage estimation for
temporally extended actions, allowing a state-of-the-art policy
optimization algorithm to optimize policies in Dec-POMDPs in
which agents act asynchronously. We show that our algorithm is
capable of learning optimal policies in two cooperative domains,
one involving real-time bus holding control and one involving
wildfire fighting with unmanned aircraft. Our algorithm works
by framing problems as “event-driven decision processes,” which
are scenarios in which the sequence and timing of actions and
events are random and governed by an underlying stochastic
process. In addition to optimizing policies with continuous state
and action spaces, our algorithm also facilitates the use of event-
driven simulators, which do not require time to be discretized
into time-steps. We demonstrate the benefit of using event-driven
simulation in the context of multiple agents taking asynchronous
actions. We show that fixed time-step simulation risks obfuscating
the sequence in which closely separated events occur, adversely
affecting the policies learned. In addition, we show that arbi-
trarily shrinking the time-step scales poorly with the number
of agents.

Index Terms— Artificial intelligence, autonomous vehicles,
discrete event simulation, distributed decision-making, neural
networks, multi-agent systems.

I. INTRODUCTION

IN COOPERATIVE multi-agent environments, policies
become difficult to optimize using reinforcement learning

due to the curse of dimensionality. Additionally, the delay
between accrued rewards and responsible actions is a
significant problem in cooperative multi-agent systems, where
one agent may receive undeserved reward from favorable
actions performed by other agents. A possible way to address
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these problems is to have agents learn multi-step macro-
actions, rather than the low-level primitive actions typically
considered in reinforcement learning algorithms.

Suppose we were to use reinforcement learning to learn a
policy to fly an unmanned aircraft to a nearby forest. Learning
the precise actuator commands from the single reward of
whether or not we got there would be intractable. Macro-
actions are typically defined by a policy that maps observations
to primitive actions and a set of conditions specifying when the
macro-action terminates [1]. We can pre-train macro-actions
to perform higher level tasks such as way-point tracking, and
have a policy learn to use them to navigate to our goal.

When considering cooperative multi-agent environments,
the problem of mapping a single reward for successful coop-
eration to each individual agent’s primitive actions becomes
exponentially more difficult as we scale the number of agents.
For this reason, the use of macro-actions becomes substantially
more necessary. For example, consider a problem in which
many unmanned aircraft must cooperate to extinguish multiple
fires. By restricting our action space to only high-level macro-
actions (such as fly to a specified fire, or attempt to extinguish a
fire), we can rely on traditional controllers to execute the low-
level control policies required by these macro-actions. With
macro-actions, we can substantially reduce the size of the state
space (as many of the degrees-of-freedom pertaining to the
pose of any given aircraft may not be relevant at this level of
abstraction), as well as significantly reduce reward-delays and
ease credit assignment. We can now attribute the rewards of
extinguishing a large fire to the fact that we attempted to do so
alongside a supporting agent, as opposed to a long sequence
of low-level observations and actuator inputs. In general, using
macro-actions allows us to shrink the state-space to only
the subset of states relevant to deciding between the macro-
actions. Additionally, using them enables us to substantially
reduce the effective length of a typical episode since we
need only consider time-steps in which a new macro-action
is selected [2], [3].

Even when considering only decentralized policies in which
each agent makes an independent decision based on their
partial observation of the environment, a challenge arises
when extending the use of macro-actions to cooperative multi-
agent domains. Since macro-actions are temporally extended,
agents executing decentralized policies must act asynchro-
nously. However, few off-the-shelf reinforcement learning
algorithms consider the problem of multiple-agents acting
asynchronously. To address asynchrony, we view such a multi-
agent decision process as event-driven, where agents choose
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a new macro-action when prompted by an event in some set
of events occurring in the environment (such as completion of
the currently executed macro-action, or the availability of new
information). This article presents a method for learning opti-
mal macro-action policies for event-driven decision processes.

In many real world problems, the durations over which
macro-actions are active are drawn from continuous distrib-
utions. However, current methods for planning and learning
with macro-actions in multi-agent settings simulate the envi-
ronment by discretizing time into fixed time-steps, as well
as using discretized state and action spaces [4]–[9]. When
using macro-actions in multi-agent environments, temporal
discretization poses a unique problem because assuming a
fixed time step may group more than one temporally distinct
event within a single time step. We refer to this as a race
condition. In these race conditions, information about the
relative timing of the events is lost, and learning with such
a simulation environment can lead to optimized policies that
transfer poorly to the real world.

As an example in which event-sequences can affect the
policy learned, consider two aircraft which can each fly to
one of two locations or remain in place. If they choose the
same location to fly to, they both accrue a large negative
reward (as they may collide and crash). If they choose different
locations, they accrue a small positive reward. Given this,
we may have that one agent chooses a location first, and
the other observes that choice and decides to fly to the other
location. However, if the time-step was large enough such that
both agents always had to choose their action simultaneously,
they may be forced to learn a strategy in which they both
always choose the safe option of remaining in place. This
example demonstrates an instance in which the choice of
simulation time-step can adversely affect the policy learned
by an arbitrary reinforcement learning algorithm—a problem
which is unique to multi-agent domains with temporally-
extended and asynchronously executed actions.

At the cost of computation time, one could mitigate the
risk of race conditions by arbitrarily shrinking the time-
step. However, we will demonstrate that in order to maintain
a chosen threshold for the probability of a race condition,
one must decrease the time-step quadratically with the num-
ber of agents. Since the computation time for a simulation
is typically inversely related to the time-step, the compu-
tation time also scales quadratically with the number of
agents.

Representing policies as deep neural networks has shown
success in the domain of decentralized multi-agent decision
making [10], and allows for the representation of continuous
state-spaces when trained with policy gradient methods. This
paper presents an extension of the PS-TRPO algorithm [10] to
accommodate temporally extended actions, which both allows
for continuous state-space representation and does not assume
a fixed time-step. By using such an algorithm, we can simulate
event-driven processes using event-driven simulators, which
step from event to event as opposed to from time-step to time-
step. By making use of such simulators, we can eliminate race
conditions and scale the number of agents while only linearly
scaling the computation time of the simulation.

This article presents two key contributions. The first con-
tribution is a modification to the PS-TRPO algorithm that
allows it to optimize macro-action policies. In addition
to interfacing with event-driven simulation and continuous
state/action spaces, the algorithm does not require any expert
demonstrations for policy optimization, unlike a state-of-the-
art algorithm in this domain [5]. We demonstrate that our
algorithm is able to learn optimal policies in cooperative multi-
agent environments, including real-time bus holding control
and wildfire fighting with unmanned aircraft. The second
contribution is a pair of experiments on the wildfire domain
that demonstrate the utility of moving from fixed time-step
simulations to event-driven simulations. The first of these
experiments shows that large time-steps can result in race
conditions that cause poor policy transfer between simulation
and the real world, and the second demonstrates that mitigating
the risk of race conditions forces a quadratic decrease in time-
step with the number of agents.

To our knowledge, in addition to being able to interface
with event-driven simulators, our algorithm will be the first
that uses deep reinforcement learning to optimize decen-
tralized macro-action policies in multi-agent environments.
While other research on macro-actions allow for planning over
multiple levels of hierarchy, this paper will focus on the case
in which learning is over macro-actions that exist at a single
level of hierarchy, leaving the extension to full hierarchical
learning to future work.

II. PRELIMINARIES AND RELATED WORK

A. Generalized Advantage Estimation and TRPO

Policy gradient methods are widely used for optimiz-
ing policies through reinforcement learning. In these meth-
ods, we define a policy as a mapping from a history of
observations o0:k to a distribution over actions at the kth
decision-instant. A policy ψθ(o0:k) is parameterized using
some parameter vector θ . Policy gradient methods update θ
by estimating the gradient direction that improves perfor-
mance the most. Generalized Advantage Estimation (GAE)
is a method for computing approximate policy gradients from
simulation trajectories [11]. Previous policy-gradient methods,
though providing unbiased estimates of the policy gradient,
result in gradient estimates with high variance that worsen with
long time-horizons. Further, it is argued that GAE, which is a
method specified by two hyper-parameters γ and λ, reduces
this variance while maintaining a tolerable level of bias [11].

GAE defines the advantage function A(sk, ak) to be the
difference between V (sk) and Q(sk , ak), where V (sk) is the
value being in state s at the decision-instant k and Q(sk , ak) is
the value of taking action a from state s at the decision-instant
k ∈ N. They incorporate the hyper-parameter γ as follows:

V γ (sk) := Esk+1:∞,ak:∞

[ ∞∑
l=0

γ lrk+l

]
(1)

Qγ (sk, ak) := Esk+1:∞,ak+1:∞

[ ∞∑
l=0

γ lrk+l

]
(2)

Aγ (sk, ak) := Qγ (sk, ak)− V γ (sk) (3)
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where rk is the reward received from taking action ak from
state sk . The discounted approximation to the policy-gradient
is then defined as:

gγ := Es0:∞,a0:∞

[ ∞∑
k=0

Aγ (sk, ak)∇θ logψθ (ak | sk)

]
(4)

When a policy is used to simulate a batch of episodes in
one training epoch, the GAE advantages are estimated by
first computing δV

k , which is an estimate of the immediate
advantage of action of ak , and then the GAE advantage
estimate AG AE(γ ,λ)

k as follows:

δV
k := rk + γ V (sk+1)− V (sk) (5)

AG AE(γ ,λ)
k =

∞∑
l=0

(γ λ)lδV
k+l (6)

Here, V (sk) is the approximate value function, referred to as
a baseline, and λ is a hyper-parameter that is used in addition
to γ to control the bias-variance trade-off in gradient estima-
tion. The baseline V (sk) is also a function approximator (such
as a linear mapping or neural network) parameterized by some
vector φ. Once the advantages are computed, an algorithm
such as Trust-Region Policy Optimization (TRPO) updates
the parameters θ by constraining the KL-divergence between
the previous and new function approximations, and updates φ
by training the baseline model with supervised learning to
map states to their average discounted returns in the set of
trajectories [12].

B. Dec-POMDPs and PS-TRPO

Initial efforts to extend the partially observable Markov
decision process (POMDP) framework to multi-agent settings
attempted centralized control over the joint state and action
spaces of all agents, making planning intractable. To address
this problem, efforts have been dedicated to solving decen-
tralized versions of the same problems, in which each agent
has access to only some local observation of the state space
(which may include additional information communicated by
other agents), and must choose their action based on only that
observation. PS-TRPO is an extension to the TRPO algorithm
to cooperative multi-agent domains modeled as decentralized
POMDPs (Dec-POMDPs), in which multiple agents act in
a single environment with decentralized execution of the
same policy ψθ [10]. Here agent i ’s kth action is given by
ai,k ∼ ψθ (oi,0:k), where oi,0:k is the i th agent’s observation
history. The parameters θ of ψθ are then updated by the
TRPO algorithm using advantages computed from all agents’
trajectories. They assume a reward structure in which all
rewards are shared jointly by agents.

C. MacDec-POMDPs and the PoEM Algorithm

A policy in a Dec-POMDP is a mapping from an agent’s
local observations to their local action. However, we may
want to optimize a policy in an environment in which the
observation spaces high-dimensional. There often exists a
natural hierarchical abstraction over the policy space, in which
high-level controllers issue commands to low-level controllers,
which lead to the development of the options framework [1].

An agent i ’s option, or macro-action space Mi is defined as
containing macro-action tuples mi = 〈I m

i , β
m
i , π

m
i 〉, where

for each macro-action mi ∈ Mi , I m
i specifies a set of states

from which the macro-action can be initiated, βm
i specifies

the probability of the action terminating in any given state
after having been initiated, and πm

i specifies the low-level
controller corresponding to that macro-action, mapping the
agent’s observation to a primitive (non-macro) action.

Planning over macro-actions in Dec-POMDPs can be for-
malized as a MacDec-POMDP [13]. Since macro-actions can
extend over arbitrary time horizons, we must treat our decision
process as a semi-MDP and find an optimal policy ψ that maps
an agent’s observation history to a macro-action. The current
state-of-the-art model-free reinforcement learning algorithm
for optimizing policies in the MacDec-POMDP setting is
the PoEM algorithm [5]. This algorithm aims to optimize a
finite state controller (FSC) that represents a macro-action
policy using expectation-maximization (EM). The algorithm
is shown to scale linearly with the number of agents, but
quadratically with the number of nodes in the FSC, a number
which is proportional to the discretization of the observation
and action space. Additionally, the algorithm generates expe-
rience histories by requiring demonstrations from an expert
heuristic controller. In this paper, we will extend the PS-TRPO
algorithm to optimize policies in MacDec-POMDPs, preserv-
ing the algorithms’ ability to optimize over continuous state
and action spaces and requiring no expert demonstrations for
policy optimization.

III. EXTENDING PS-TRPO TO MACDEC-POMDPS

To extend the PS-TRPO algorithm to optimize macro-
action policies, we must address the fact that actions are
asynchronous and temporally extended. We begin by framing
a MacDec-POMDP as an event-driven process, allowing us to
associate decision instants to discrete events. With this frame-
work, we can modify GAE to allow PS-TRPO to optimize a
policy with trajectories generated from MacDec-POMDPs.

A. MacDec-POMDPs as Event-Driven Processes

Similar to the definition of the option presented in
Section II-C, we define the macro-action space as the tuple
〈I m

i , Em
i , π

m
i 〉. For each macro-action m, I m

i and πm
i are

the set of states from which agent i can take the macro-
action and the lower-level controller the macro-action spec-
ifies, respectively. However, Em

i now specifies a set of events,
the triggering of any of which terminates the macro-action,
prompting the agent to select another macro-action given a
new observation. In our example where unmanned aircraft
coordinate to extinguish fires, the macro-action chosen by one
aircraft may be to fly to a particular fire. A lower-level policy
tuned to optimally carry out this order would take over control
until a relevant event occurs, such as receiving information that
the fire being flown to was just extinguished. When such an
event occurs, the agent would be given a new observation and
the opportunity to choose a new action.

Unlike conventional MDPs, agents may receive rewards at
any instant in time, not just when an event prompts them
to act. For example, if rewards were given to the whole
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team for accomplishments, one agent may accrue a reward
for the team without triggering an event that prompts the
another agent to choose a new action. Hence, we adopt a
convention by which all rewards accrued by an agent over the
duration 
ti,k , in which macro-action mi,k is being carried
out, can be collected into a single reward to associate with
that macro-action. We let:

ri,k =
Ji,k∑
j=0

e−γ
τ jρ j +
∫ 
ti,k

0
e−γ t ci,k(Ti,k + t)dt (7)

Ti,k =
k−1∑
j=0


ti, j (8)

Here, ρ0:Ji,k are the Ji,k discrete rewards accrued by agent i at
times Ti,k +
τ0:Ji,k , ci,k(t) is a continuous-time reward gener-
ator over the interval that the macro-action is being executed,
and γ is the continuous-time discount rate. The rewards ρ0:Ji,k

are accrued on events occurring in the environment during the
time when an agent’s kth macro-action is active.

B. Adapting GAE for Temporally Extended Actions

A simulation episode will now generate a trajectory
〈. . . , oi,k ,mi,k ,
ti,k , ri,k , . . .〉 for each agent i . With these
trajectories, we can modify Equations 5 and 6 in GAE to
account for the temporal extension of actions. We will refer
to GAE modified for macro-actions as M-GAE. The modified
equations are:

δV
i,k = ri,k + e−γ
ti,k V (oi,k+1)− V (oi,k) (9)

AM−G AE(γ ,λ)
i,k =

∞∑
l=0

e−γ λ(Ti,l −Ti,k )δV
k+l (10)

The modifications now factor in the duration over which
macro-actions are active into the discounted sum of rewards
that is associated to the taking of each macro-action,
as opposed to assuming every action lasts a single time-step.

Using M-GAE, the PS-TRPO algorithm can now opti-
mize policies in MacDec-POMDPs framed as event-driven
processes.

IV. EVENT-DRIVEN SIMULATORS

Many methods for learning policies in multi-agent settings
assume that simulations are performed with some fixed step-
size. However, in reality, the timings of the various agents’
decisions may be drawn from continuous, stochastic distri-
butions. As mentioned earlier, using simulators with fixed
time-steps leaves the possibility open that more than one
relevant event can occur in the same time-step. Consequently,
a fixed time-step simulation obfuscates the relative timing of
these events, and may result in policies being learned on the
simulator that transfer poorly to the real world, where the
sequences may be important.

A key advantage of framing MacDec-POMDPs as event-
driven processes is that it allows us to use event-driven simu-
lation. Event-driven simulators, such as the Python module
SimPy [14], step the environment from event to event as
opposed to from one time-step to the next. Underlying the
simulation is the assumption that all entities cycle through first

Fig. 1. An example bus corridor.

performing some instantaneous processing, and then yielding
until some event they specify occurs, which could be the lapse
of some specified amount of time.

Even though not every real-world environment is event-
driven, modeling one as an event-driven process does not
necessarily sacrifice much simulation fidelity. For example,
suppose that we have two aircraft, intending to fly to two
different fires. We can simulate their individual flights by
sampling a duration for each aircraft from a distribution
dependent on their desired flight path and average velocities.
We can then assert that after those durations have elapsed, each
aircraft will have reached their respective fires. By doing so,
we can treat the initiation and termination of each agent’s flight
as distinct events, allowing the simulator to skip simulating
anything in-between. In this example, we do, however, lose
the ability to simulate the influence flight paths have on each
other. This simplification may be benign because we want to
learn high-level policies that may not need to take into account
these details.

To motivate the use of event-driven simulation, in the latter
part of the next section we will demonstrate that the choice
of step-size can have adverse affects on the quality of policy
learned in simulation. Though we can always shrink the step-
size by a sufficient amount to ensure high-fidelity simulation,
we will show through a set of Monte-Carlo experiments that
doing so causes the computational cost of simulation to scale
poorly with the number of agents compared to an event-driven
simulation.

V. PERFORMANCE EXPERIMENTS

The experiments in this section validate the claim that the
PS-TRPO algorithm with M-GAE is able to optimize policies
in multi-agent environments where agents select from a space
of temporally extended actions. The real-time bus holding
problem will be used to validate this claim. This section also
shows the benefit of using event-driven simulators over fixed
time-step simulators in the wildfire fighting problem.

A. Real-Time Bus Holding

Consider a fleet of buses servicing the bus-corridor, shown
in Figure 1. Buses sequentially visit a set of stops numbered 1
though K , returning to Stop 1 after the loop completes, unload-
ing all passengers, and repeating the cycle. A phenomenon
called bus bunching can occur, in which buses queue to visit a
set of stops, leaving no time between their arrivals, after which
a long delay occurs until the bunch cycles back to the stop.
This phenomenon leads to unreliable and sub-optimal service,
and the research community has explored a strategy called bus
holding to mitigate the issue. In this control strategy, a bus is
instructed to hold at its current stop for some specified amount
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of time, in addition to the time it waits for passenger boarding
and alighting. The problem has previously been framed as a
Dec-POMDP, and effective decentralized policies have been
discovered through reinforcement learning [15]. We will fol-
low the problem formulation described by Chen et al. [15],
and show that PS-TRPO with M-GAE generates polices that
match their results in performance.

1) Problem Specification: Our environment consists of a
bus corridor of N buses and K bus stops. All agents are
initialized in a queue for access to Stop 1, with Bus 1 being
the first in the queue and Bus N being the last. Upon arrival
at Stop k, Ui,k = �qk · Li,k	 passengers will attempt to
alight the bus, where qk ∈ [0, 1] and Li,k ∈ [0, Lmax]
is the load of the bus when reaching Stop k. Here, �·	 is
used to indicate rounding to the nearest integer. Additionally,
Bi,k = min(�νk · hi,k	, Lmax − Li,k + Ui,k ) passengers will
attempt to board the bus, where νk ∈ [0,∞) is the passenger
arrival rate, and hi,k is the headway between Bus i and
Bus i − 1 ahead of it, defined as the time elapsed between
the departure of Bus i − 1 and the arrival of Bus i at
Stop k. The bus will wait a nominal amount of time of
Si,k = max(taUi,k , tb Bi,k), where ta and tb are the rate at
which passengers alight and board, respectively. The bus will
then wait an additional amount of time chosen from its action
space before departing from the stop. The bus will then travel
for time r tk+1 to Stop k + 1, and join the queue for arrival at
that stop.

Upon arriving at a stop, Bus i will receive an observation
of [z1, z2, z3, z4], where z1 is the current stop’s index, z2 is
the headway hi,k , z3 is the current load Li,k , and z4 is the
sojourn-time elapsed between its current and previous obser-
vations. The bus then selects a holding time as some multiple
ai,k ∈ {0, 1, 2, 3} of the parameter Thold. The goal of policy
optimization is for each bus to choose actions in such a manner
that all headways hi,k are as close as possible to the planned
headway H . Hence, whenever a bus i arrives at a stop k,
a reward of −νk |hi,k − H |2 will be accrued by all agents.

The parameters for the bus corridor environment used in
our experiments are summarized in Table I. All policies
are trained on maximum episode lengths of three simulated
hours, which corresponds to four to five cycles of all buses
through the corridor. The policy trained using PS-TRPO with
M-GAE is represented by a Multi-Layer Perceptron (MLP).
The parameters to represent the policy and train it using
PS-TRPO with M-GAE are summarized in Table II.1

As benchmarks for comparison, we compare the trained
MLP policy to the performance of not holding at all, which we
refer to as No Holding, and a policy that we call Optimized
Thresholds. In this policy, a set of three ordered thresholds
T1 > T2 > T3 are given, and the action chosen is:

ai,k(hi,k ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if hi,k > T1

1 if T2 < hi,k < T1

2 if T3 < hi,k < T2

3 if hi,k < T3

(11)

1The sensitivity of results to enlarging the hidden layers, adding hidden
layers, or perturbing the TRPO Max. Step, was not found to be substantial in
this experiment.

TABLE I

ENVIRONMENT PARAMETERS USED IN REAL-TIME
BUS HOLDING EXPERIMENTS

TABLE II

PARAMETERS USED FOR MLP POLICY REPRESENTATION AND

TRAINING IN REAL-TIME BUS HOLDING EXPERIMENTS

Fig. 2. Training curves for MLP policy on the Real-Time Bus Holding
Environment, for various values of the parameter λ.

The values T1:3 are optimized using the SciPy implementa-
tion of differential evolution [16], [17]. The optimization target
was average return under the same reward function used to
optimize the MLP policy with the same episode length.

2) Results: As shown in Figures 2 and 3, the optimized
MLP policy is able to achieve an average total return per
episode that is substantially greater than those of the No Hold-
ing and Optimized Thresholds policies, though the Optimized
Thresholds policy is itself a substantial improvement over
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Fig. 3. Training curves for MLP policy on the Real-Time Bus Holding
Environment, trained with various batch sizes.

No Holding. In Figure 2, we see that λ slightly influences
the total return, but the tested values produce policies that
are relatively similar in performance when compared to the
Optimized Thresholds. In Figure 3, we do, however, observe
that decreasing the batch size degrades convergence. This
degradation is due to the fact that the estimated gradients are
noisier with smaller batches.

Figures 4 and 5 show that the No Holding policy results
in the fleet of buses moving together as a single bunch,
as expected. The entire load is borne by the leading bus,
which saturates to being full, and the buses behind it remain
almost empty. On the other hand, the Optimized Thresholds
policy has similar steady-state performance as the optimized
MLP policy, but takes approximately 200 minutes from the
start of the episode to achieve uniformity in bus arrivals at
stops, while the optimized MLP policy requires only around
100 minutes. Neither of these two policies saturate the load
of any bus in steady-state operation, but the optimized MLP
policy maintains lower variance in the distribution of loads
over buses when they reach any given stop. Though the
variance in the distribution of loads over buses is not explicitly
optimized for, the variance occurs as a consequence of non-
uniformity in arrival times. Hence, smaller variance in this
distribution of loads suggests that the optimized MLP policy is
mitigating the adverse effects of bus-bunching more effectively
than Optimized Thresholds can. This experiment provides
evidence that the PS-TRPO algorithm using M-GAE is well
suited to optimize policies with continuous observation spaces
in event-driven, multi-agent environments.

B. Wildfire Fighting Problem

The goal of this experiment is to demonstrate the utility
of using event-driven simulations, which step from event-
to-event, over fixed time-step simulations. We introduce a
wildfire fighting environment. We will learn policies on both
an event-driven simulation of this environment, which makes
no assumption regarding time-step, as well as fixed time-
step simulations of the environment, where events that occur

TABLE III

ENVIRONMENT PARAMETERS USED IN THE WILDFIRE
FIGHTING PROBLEM EXPERIMENTS

within the same time-step are considered to have occurred
simultaneously. We will then test all learned polices on the
event-driven simulation to examine whether approximation
errors introduced by temporal discretization can degrade the
performance of the policy in the event-driven environment.
As the time-step goes to zero, the simulation should be
effectively identical to the event-driven simulation. Thus, it is
expected that a sufficiently small time-step should lead to
minimal to no degradation in the performance of the policy,
when tested on the event-driven simulator.

1) Problem Specification: There are N unmanned aircraft
that are tasked with extinguishing K fires. At a decision-
instant, an aircraft can choose any of the five closest fires
to move straight toward at velocity vuav, or to hold its current
location for a time Thold. If an aircraft is currently at a fire,
and it chooses to hold, it will attempt to extinguish the fire.
Each fire is given a health Thealth, which is the amount of
time aircraft must collectively attempt to extinguish the fire
before it is extinguished. When any fire is extinguished, all
agents receive a reward of rext. If an aircraft is moving toward
a fire or currently attacking it, it is considered interested in the
fire. However, if an aircraft attempts to extinguish a fire that
another aircraft is currently attempting to extinguish, all agents
receive a penalty of rpen at the instant it makes that decision.
This penalty is meant to simulate an adverse effect of aircraft
crowding a space, but also makes the learning problem more
interesting by increasing the conditioning of optimal actions
on the status of other agents.

At any decision instant k, aircraft i receives an observation
oi,k consisting of its own x and y location, its distance to the
five closest fires, the interest in each of those fires, whether
each of those fires has already been extinguished, and the
remaining health of each of the fires. A simulation episode
lasts a maximum simulated duration of Tmax. The parame-
ters used by our simulation environment are summarized
in Table III. The nine fires form three clusters of three, with
the cluster centroids evenly spaced 0.99 m from the origin,
and with the fires evenly spaced 0.01 m from their centroids.
The initial locations of the aircraft are randomized uniformly
within the bounds of [−1, 1] m at the start of each episode.
The environment parameters have been selected to illustrate
the adverse effects of simulation step-size on a reinforcement
learning problem with multiple agents acting asynchronously,
as opposed to most accurately depict real-world settings. Once
again, an MLP is used to represent the decentralized policy.
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Fig. 4. Arrival times of the six buses at the ten stops, under (a) a policy that uses no holding, (b) a policy learned via PS-TRPO using M-GAE, and
(c) a policy that optimizes three headway thresholds for selecting between the actions.

Fig. 5. Load at arrival of the six buses as they arrive at the 10 stops, under (a) a policy that uses no holding, (b) a policy learned via PS-TRPO using
M-GAE, and (c) a policy that optimizes three headway thresholds for selecting between the actions. Results are displayed for the buses’ fourth cycle through
the stops to show the steady-state behavior.

TABLE IV

PARAMETERS USED FOR MLP POLICY REPRESENTATION AND TRAINING
IN THE WILDFIRE FIGHTING PROBLEM EXPERIMENTS

The parameters used to train policies using PS-TRPO with
M-GAE are summarized in Table IV.2

2) Results: To ensure that intelligent policies can be learned
in this problem domain, we first trained a policy on the
event-driven simulation for an excessive 3000 epochs. The
learned behavior was then examined to see if actions taken

2We experimented with enlarging the hidden layers, adding hidden layers,
and adjusting the TRPO maximum step size. We found that performance was
not significantly sensitive to these adjustments. The value of γ is chosen to
be non-zero to discourage time-wasting actions, and λ is chosen to impose to
extra credit assignment to recent actions. The batch size was varied to achieve
acceptable gradient variance while minimizing training time.

by the policy match intuition. Since there is a large penalty
for attempting to hold at a fire that another agent is currently
holding at, intuition would suggest that doing so when we
observe another agent’s interest in the fire should be avoided.
Meanwhile, it would be sensible to hold at a fire if it does
not have another agent interested in it. We find that agents
only hold at a fire that has another agent interested in it 27%
of the time, while they hold at a fire that has no other agent
interested in it 84% of the time. If the agent chooses another
fire to target, we find that it chooses the closest and second
closest fires 15% of the time, respectively, while choosing the
third closest fire 68% of the time. Since fires are arranged in
clusters of three, and the separation between clusters is much
larger than the separation between the fires within them, agents
appear to choose the closest cluster of fires 98% of the time.
It is important to note that if an agent is currently at a fire,
then moving to the closest fire is equivalent to staying where
it is and immediately making a new decision. Though it is
peculiar that the third closest fire is being chosen with the
highest probability, there is little cost to moving to another
fire when already at a cluster.

We encode a policy with the behaviors listed in the previous
paragraph as follows. If the agent is at a live fire, it will hold

Authorized licensed use limited to: UCLA Library. Downloaded on August 27,2020 at 20:38:18 UTC from IEEE Xplore.  Restrictions apply. 



1266 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 20, NO. 4, APRIL 2019

Fig. 6. Approximated behavior of the learned MLP policy in the wildfire
fighting problem.

with 84% probability if there is no other interest. If there is
other interest, it will hold with 27% probability. If it does not
hold, will fly to other fires with the probabilities listed above.
A flowchart representing this policy is shown in Figure 6.
When testing this simpler approximation of the learned policy,
we find that it performs 28% worse than the learned policy
when compared on average discounted return. Thus, although
this simpler policy seems to approximate the learned policy
in important ways, there appear to be subtleties in the learned
policy that improve performance.

With confidence that policies training in this problem
domain learn intelligent behaviors, we compare the effects
of varying the fixed time-step of simulation on the policy
learned. All policies were trained for 300 epochs, after which
all training curves had reached asymptotes as policies settled to
local optima. For each simulation environment, five separate
policies were trained from scratch, to account for variation
in the local optima on which they may settle. Each of
these policies were then tested on the event-driven simulation
environment, and the average discounted returns for each of
policies were averaged to estimate the performance of a policy
learned on that simulation environment and tested on the
event-driven environment.

Figure 7 shows performance statistics for fixed time-
step simulation environments with time-steps 
T ranging
from 0.1s to 10.0s. We see that when the time-step is less
than one second, the learned policies perform as well as
those learned on the event-driven simulation. However, if the
time-step is greater than one second, the performance is
substantially degraded. Since the nominal value for Thold
is 3.0 ± 0.03s, and the value for Thealth is 3.0s, half of agents’
attempts to extinguish fires would require them to make
an additional attempt at doing so, since the fire would not
have been extinguished in the single attempt. However, if the
simulation time-step is greater than one second, the time held

Fig. 7. Performance when tested on the Event-Driven (ED) simulator of
policies learned on the (ED) simulator and Fixed Step-size (FS) simulations of
various step sizes. Performance drops substantially when the FS-100 simulator
has Thealth = 2.9999 instead of Thealth = 3.0.

at a fire by any agent is rounded to a value greater than 3.0s,
resulting in a policy learned expecting that any agents’ attempt
to extinguish a fire will result in it being extinguished. This
expectation causes the performance of policies learned on
simulations with these time-steps to degrade when tested on
the event-driven simulator.

To confirm that this is the cause of policy degradation,
we modify the value of Thealth to be 2.9999. Previously,
the approximation made by a time-step of 1s computed the
fire to still be alive when it was supposed to be. However,
with the modified value of Thealth, this is no longer the case.
That is, with this change, aircraft attempting to extinguish fires
in the 
T = 1s simulator will always see fires extinguished
in a single attempt. As expected, this causes the performance
of the policy to degrade when tested on the event-driven
environment.3

This experiment provides an example of how the assumed
time-step can force a policy to be learned that transfers
poorly to an event-driven simulation, or the real-world, where
temporal approximations are not made. While this experiment
was tailored to demonstrate the problem, we can generally
expect the choice of time-step to cause poor policy transfer if
it is large enough to obfuscate the sequence in which events
occur. In the Wildfire Fighting Problem, the performance
degradation occurs because the order between the event of
a hold-action ending and the fire being extinguished are
obfuscated. If restricted to using fixed time-step simulation,
we would thus hope to maintain a time-step that is much
smaller than the typically duration that separates important
events.

We note that the use of event-driven simulation is appropri-
ate in this domain because we can assume that the operation

3Note that using a time-step of 10−0.5s appears to produce better results
than using a time-step of 1.0s. Though it is statistically possible that they are
not different, a possible explanation for why they might be is that hold actions
occasionally take 2 · 10−0.5s, encouraging more careful use of the action.
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TABLE V

RELATIONSHIP BETWEEN 
T AND N , FOR MAINTAINING
CONSTANT δ , AS THE TIMING OF EVENTS ARE DRAWN

FROM VARIOUS DISTRIBUTIONS

of macro-actions, which in this experiment are simple way-
point trackers, is independent of the behavior of other agents.
However, by using event-driven simulation, we do compromise
some simulation fidelity, such as the possibility that two
agents’ flight paths may intersect and result in expensive
evasive maneuvers. Hence, if the dynamics of agents cannot
be decoupled during the operation of macro-actions, then a
simulation with a sufficiently small time-step is preferable.
In the next experiment, we characterize how rapidly the
time-step must be shrunk as the number of agents in the
environment increases, illustrating the advantage of opting for
event-driven simulation.

C. Scaling the Time-Step to avoid Race-Conditions

Above, we defined a race condition to be a time-step in
which more than one event occurs. For an N-agent problem,
we can assume that the time at which events pertaining to
the N agents occur are drawn from some distribution p(t) for
t ≥ 0. Hence, for N samples from p(t), a race condition
occurs if any two samples fall into the same interval of
size 
T . We can always shrink 
T arbitrarily so that the
probability of a race condition is less than some threshold δ.
However, since this comes at the cost of computation time,
it is of interest to examine how 
T must shrink as we
increase N . We do so by selecting some example distribution,
sampling 10,000 sets of N samples from the distribution, and
for each set of N samples, we check for a race condition
by seeing if more than two of the N samples fall in the
same interval of some chosen 
T . We then vary 
T until
the probability of a race condition is less than some thresh-
old value of δ = 0.1. To determine a relationship for each
distribution tested, we vary N from 2 to 20, solve for the
corresponding 
T , and fit the functional form:


T = αNβ (12)

Table V shows that for various example distributions,

T varies inversely with approximately N2.2. For a fixed
duration simulation, computation time scales inversely with
the time-step. Hence, we find that computation time in fixed
time-step simulations of event-driven process scales approxi-
mately as N2.2 with the number of agents N , assuming we
maintain a fixed low-probability of race conditions. Though
the underlying distribution p(t) of an arbitrary environment is
unlikely to exactly be any of the example distributions chosen,
this experiment suggests that an arbitrary distribution will also
have β ≈ 2.2, or at the very least, β > 1. Event-driven
simulators, on the other hand, will process a number of events

which are in many cases linearly related to the number of
agents, providing a substantial computational advantage when
simulating large-scale multi-agent problems.

VI. CONCLUSION

This paper presented an algorithm for learning neural net-
work policies for control in cooperative multi-agent environ-
ments with asynchronous and temporally extended actions.
The novelty of this contribution is that it extends an algorithm
called PS-TRPO that does not require discretization of the
observation space. This contrasts with existing algorithms
tackling the same class of problem. Section V-A showed that
our algorithm is able to learn an optimal policy for real-
time bus holding, and is able to achieve better qualitative and
quantitative performance than a sensible baseline policy. Since
the majority of decision problems can benefit from temporal
abstraction, this work is relevant the many multi-agent decision
problems currently too intractable to solve when restricted
only to primitive actions.

The approach to extending PS-TRPO involves framing the
decentralized multi-agent decision problem as event-driven,
allowing us to in many circumstances model our environment
using event-driven simulation. Using such a simulator does not
require assuming a fixed time-step, allowing us to eliminate
race conditions. Section V-B showed that these artifacts from
temporal discretization obfuscated the event sequences and
can result in learning policies that are sensitive to the time-
step. Further, Section V-C showed that arbitrarily shrinking the
time-step to avoid these artifacts scales poorly with the number
of agents, motivating the use of event-driven simulation. More
generally, this work demonstrates the utility of using event-
driven simulation in modeling decision problems in which
the sequence of events is critical to simulation fidelity, and
the duration between events is drawn from a continuous
distributions with semi-infinite support. The source code for
this work can be found at https://github.com/sisl/event-driven-
rllab. The algorithm presented in this paper is built as a
modification to the TRPO framework in rllab [18].

The work presented here borrows inspiration from hierarchi-
cal reinforcement learning, which attempts to simplify learning
problems by stratifying decisions in levels of abstraction.
However, the problem of simultaneously optimizing high and
low-level policies is an open area of research. Our framework
has assumed that we are only attempting to optimize a
high-level policy, but the logical next step is to relax this
assumption. Another avenue for future works lies in the use of
multi-fidelity simulation, in which the event-driven simulation
may be used to balance simulation fidelity and accuracy.
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