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Abstract— A common solution criterion for partially observ-
able Markov decision processes (POMDPs) is to maximize the
expected sum of exponentially discounted rewards, for which a
variety of approximate methods have been proposed. Those that
plan in the belief space typically provide tighter performance
guarantees, but those that plan over the state space (e.g., QMDP
and FIB) often require much less memory and computation.
This paper presents an encouraging result that shows that
reducing the discount factor while planning in the state space
can actually improve performance significantly when evaluated
on the original problem. This phenomenon is confirmed by
both a theoretical analysis as well as a series of empirical
studies on benchmark problems. As predicted by the theory
and confirmed empirically, the phenomenon is most prominent
when the observation model is noisy or rewards are sparse.

I. INTRODUCTION

The problem of sensing and acting in an uncertain environ-
ment for robots can be formalized as a partially observable
Markov decision process (POMDP) [1], [2]. Because solving
POMDPs exactly is computationally intractable in general,
there has been interest in approximation methods. One
class of methods involves approximating the value function,
which is known to be piecewise linear and convex and
can be represented as a set of so-called alpha vectors [3].
SARSOP is a state-of-the-art offline method for computing
a set of alpha vectors that approximates the optimal value
function [4]. It is an iterative algorithm that plans in the space
of belief states. Other algorithms, such as QMDP (Q-function
approximation) [5], UMDP (Unobservable MDP) [3], and
FIB (Fast Informed Bound) [3], do not plan in the space of
beliefs, but plan over the state space. Consequently, these
algorithms require much less memory and computation than
belief-space planners, and have been widely used in robot
control and manipulation [6], [7], [8], even if they are not
able to represent optimal policies.

This paper shows that lowering the discount factor while
computing alpha vectors can, surprisingly, improve the per-
formance of state-space planners. The state-space planners,
QMDP, UMDP, and FIB, coarsely approximate POMDP
value functions by associating each action with exactly one
alpha vector. This inaccurate approximation can introduce
error in accounting for future events in value iteration.
Longer effective horizons can lead to higher error due to the
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inaccuracy of the model. As a result, it can be appropriate
to shorten the effective horizon, i.e., to reduce the planning
discount factor, as a trade-off between rewards from future
events and errors in the model. The benefits of decreasing
the discount factor has been observed in other contexts,
including approximate dynamic programming for MDPs [9],
reinforcement learning [10], and shallow planning in fully
observable settings [11], but the phenomenon has not yet
been studied in a POMDP context.

Our main contribution is showing that in the context of
partial observability with a known model, planning with a
lower discount factor can significantly improve the quality
of the resulting policy. A theoretical analysis shows that the
error between the true value function and the approximate
one can be bounded and further reduced when the latter is
planned with a lowered discount factor. In addition, when
rewards are sparse, a tighter error bound is obtained.

Our experiments involve seven benchmark problems with
three state-space planners, QMDP, UMDP, and FIB. A strik-
ing result is that in several problem domains, the policies
generated with a lower discount factor with these methods
nearly match SARSOP’s performance at only a fraction of
the computational expense. In addition, when observation
noise is high or rewards are sparse, the phenomenon is
more significant, as predicted by our theoretical analysis and
demonstrated experimentally.

II. VALUE-FUNCTION APPROXIMATIONS

Associated with a POMDP is a set of states S, a set of
actions A, and set of observations Ω. The immediate reward
for taking action a in state s is Rs,a. The probability of
transitioning to state s′ from state s after taking action a
is T s′

s,a. The probability of observing o after taking action a
and ending up in state s′ is Oo

s′,a. The objective is to find a
policy for selecting actions given past observation histories
that maximizes the expected sum of exponentially discounted
rewards, where the discount factor is denoted by γ.

QMDP [5] is an offline value-approximation method and
also a state-space planner. It creates a set of alpha vec-
tors, one for each action, based on the state-action value
function Q(s, a). In addition, alpha vectors are computed as
follows:

α(k+1)
a (s) = Rs,a + γ

∑
s′

T s′

s,a max
a′

α
(k)
a′ (s

′). (1)

With converged alpha vectors αa(s), the policy for a belief
state b is a∗ = argmaxa

∑
s αa(s)b(s). QMDP assumes the
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full observability of the next state, and therefore the right-
hand side of Eq. (1) is simply the MDP update rule. QMDP
has been widely used in robot manipulation [6], [7], [8].

UMDP [3] assumes no observability of future states. The
alpha vectors for each action are obtained by:

α(k+1)
a (s) = Rs,a + γmaxa′

∑
s′

T s′

s,aα
(k)
a′ (s

′). (2)

Due to the assumption of no observability, the maximization
operator on the right-hand side of Eq. (2) is executed before
the summation over s′.

Finally, FIB [3] takes the partial observability of next
states into account by computing the following alpha vectors:

α(k+1)
a (s) = Rs,a + γ

∑
o

max
a′

∑
s′

Oo
s′,aT

s′

s,aα
(k)
a′ (s

′). (3)

Update operators can defined for QMDP, UMDP, and FIB.
For example, QMDP approximates H as follows:

V̂ (i+1)(b) = max
a

∑
s

b(s)[Rs,a+

γ
∑
s′

T s′

s,a ·max
a′

αa′(s′)] ≡ HQMDPV̂
(i)(b).

(4)

There are other offline approximation approaches, such
as point-based value iteration [12], Perseus [13], and
SARSOP [4]. In contrast to QMDP, UMDP, and FIB, which
are state-space planners, these point-based methods plan in
the belief space. Alpha vectors are computed at several belief
points, and the number of belief points typically increases
during the planning process, usually resulting in many more
alpha vectors than one for each action. For example, in
the Maze20 problem [3], SARSOP produces thousands of
alpha vectors, while QMDP uses only six alpha vectors.
Belief-space planners can provide much better policies for
POMDP problems, but often at significant computational
cost. Another advantage of state-space planners is that they
do not require knowledge of the initial belief, while point-
based methods require it for planning.

III. THEORETICAL ANALYSIS

This section presents a theoretical analysis that shows that
when there exists approximation error introduced by value-
function approximation methods, the error can be reduced
by planning with a lower discount factor.

A. Error Bound of Approximate Value Functions

Without loss of generality, assume all rewards are non-
negative. We denote the true discount factor γ and the
lowered discount factor γ′ with γ ≥ γ′. Let Vγ be the optimal
value function with the true discount factor γ, and Uγ′ be
the approximate value function planned using γ′ by either
QMDP, UMDP, or FIB as in Eq. (4).

The difference between the true value function and the
approximate value function planned using a lowered discount
factor is ‖Vγ − Uγ′‖∞, where ‖ · ‖∞ is the infinity norm.
This error can be bounded as follows:

‖Vγ − Uγ′‖∞ ≤ ‖Vγ − Vγ′‖∞ + ‖Vγ′ − Uγ′‖∞ (5)

where ed ≡ ‖Vγ − Vγ′‖∞ is the discount error that
measures the difference between optimal value functions
of true discount factor and lowered discount factor, and
ea ≡ ‖Vγ′ − Uγ′‖∞ is the approximation error due to
approximation methods. Equation (5) follows the triangle
inequality in infinity-norm metric space.

According to Theorem 2 of [9], the discount error ed can
bounded as follows:

ed = ‖Vγ − Vγ′‖∞ ≤ (γ − γ′) · Vmax(γ)/(1− γ′), (6)

where Vmax(γ) is the largest possible value of the value
function with discount factor γ. Normally, this is set to be
rmax + rmaxγ + rmaxγ

2 + . . . = rmax/(1 − γ), where rmax is
the largest immediate reward. This value will be evaluated
differently later in the sparse reward scenario.

The approximation error ea(γ′) ≡ ‖Vγ′ −Uγ′‖∞ can also
be bounded. Let e(k)a (γ′) be the approximation error after k
applications of the Bellman update, V

(k)
γ′ and U

(k)
γ′ be the

optimal and approximate value functions after k times of
value iteration, respectively, and H and Hap be the exact
and approximate update operators. Therefore,

e(k)a = ‖V (k)
γ′ − U

(k)
γ′ ‖∞ = ‖HV

(k−1)
γ′ −HapU

(k−1)
γ′ ‖∞

≤ ‖HV
(k−1)
γ′ −HU

(k−1)
γ′ ‖∞

+ ‖HU
(k−1)
γ′ −HapU

(k−1)
γ′ ‖∞

≤ γ′ · e(k−1)
a + ‖HU

(k−1)
γ′ −HapU

(k−1)
γ′ ‖∞.

The first and second inequalities come from the triangle
inequality in the metric space and contraction property of
Bellman operator, respectively. We define ε0 = max{‖HU−
HapU‖∞ | U = maxa∈Ab · αa}, the difference between
exact operator H and approximate operator Hap ranging over
all possible value functions that are composed of |A| alpha
vectors. Given any |A| alpha vectors composing U , HU and
HapU can be computed through standard methods, such as
Eq. (4). Thus, ε0 is just the upper bound of ‖HU−HapU‖∞,
and we have

e(k)a ≤ γ′ · e(k−1)
a + ε0 ≤ γ′ · (γ′ · e(k−2)

a + ε0) + ε0

≤ γ′ke(0)a + ε0 · (1− γ′k)/(1− γ′).

Furthermore, since each component of αa is less or equal to
Vmax(γ

′), we can normalize ε0 by defining ε = ε0/Vmax(γ
′)

and have ε ≤ 1. The value of ε depends on the problem
and approximation method. The smaller the ε, the closer the
approximation method is to the exact method. As a result,

e(k)a ≤ γ′ke(0)a + ε0 · (1− γ′k)/(1− γ′)

= γ′ke(0)a + ε · Vmax · (1− γ′k)/(1− γ′).

By taking the limit of k, ea(γ′) is bounded by

ea(γ
′) = ‖Vγ′ − Uγ′‖∞ ≤ ε

1− γ′ · Vmax(γ
′). (7)

Combining Eqs. (6) and (7), and letting Vmax(γ
′) =

rmax/(1 − γ′), the error between the true value function
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Fig. 1. Error bound e1(γ
′) (y-axes) as a function of lowered

discount factor γ′ (x-axes) for two different values of ε (0.01
and 0.06 in the left and right plots, respectively).

and approximate value function with lowered discount factor,
‖Vγ − Uγ′‖∞, is bounded by

e1(γ
′) =

γ − γ′

(1− γ′)(1− γ)
rmax +

ε

(1− γ′)2
rmax

≡ f1(γ
′) + ε · f2(γ′)

(8)

Figure 1 illustrates the error bound e1(γ
′) with two

different values of ε. Without loss of generality, rmax is scaled
to 1. In addition, γ is set to 0.95. In Eq. (8), f1 is a decreasing
function while f2 is increasing. When ε = 0.01, i.e., the
difference between the exact update and the approximate
update is small, f1 dominates f2 and the approximate value
function would not be improved with a lowered discount
factor, as shown in Fig. 1 (left). This situation might happen,
for example, if the observation model provides near-certain
information of the environment. The POMDP would thus
behave like an MDP, and the QMDP update is close to an
exact update.

On the other hand, when the difference between an ap-
proximate update and the exact update becomes large, such
as ε = 0.06, the approximation error as the second term
in Eq. (8) is comparable to the discount error. These two
errors lead to a trade-off and the minimum occurs at a certain
lowered discount factor, as shown in Fig. 1 (right). This is
relevant, for instance, when the observation model is noisy
and less informative. Since QMDP incorrectly assumes full
observability, the difference in updates, ε, becomes larger.
The effectiveness of lowering the discount factor while
planning with different levels of observation noise will be
demonstrated in a later section.

B. Sparse Reward Scenario

When the reward function is sparse, a tighter bound can
be obtained. Assume ~r = {r1, r2, r3, ...} ∈ ~R is a sequence
of rewards that an agent obtains in a trajectory, with ~R being
the set of all possible reward trajectories. Let M be a positive
integer such that

M = min
n∈N≥0,~r∈~R

[m ∈ N>0 | rn−1 6= 0, rn = 0, . . . ,

rn+m−2 = 0, rn+m−1 6= 0].
(9)

Here we assume the decision process starts at t = 0. For
example, ~r = {0, 0, 1, 0, 0, 1, . . .} corresponds to M = 3.
If M is larger, then the reward is more sparse. In addition,
Vmax(γ) = rmax · γM−1/(1− γM ). Therefore, by replacing

0 0.5 1

0.5

1

1.5

2

γ′

M = 1

M = 10

M = 30

M = 70

Fig. 2. Normalized error ēM as a function of lowered
discount factor γ′ with respect to different values of M in
Eq. (9).

Vmax in Eq. (6) and Vmax(γ
′) in Eq. (7) by this formula, a

new error bound is obtained:

(γ − γ′)γM−1rmax

(1− γ′)(1− γM )
+

ε · γ′M−1
rmax

(1− γ′)(1− γ′M )
. (10)

When M = 1, Eq. (10) is just Eq. (8). When M increases,
the error bound becomes tighter. To demonstrate this, curves
of error bound with respect to different values of M are
plotted. However, since each M corresponds to different
POMDP problems, normalization is necessary before making
comparisons. Let eM (γ′) be the error bound in Eq. (10).
Define the normalized error as ēM = eM/Vmax, where
Vmax = rmax · γM−1/(1− γM ).

Figure 2 plots the normalized error ēM as a function of
γ′ with respect to four values of M . Note that in the figure,
ε = 0.1, γ = 0.95, and rmax = 1.0. Since the error bound is
normalized, all curves coincide at γ′ = 0 and γ′ = γ, the two
ends of curves. As M increases, the minimal values of each
curves decreases and thus the error bound becomes tighter. In
addition, the minimizer for each curve γ∗′

M slightly increases
toward γ. These properties, such as the tighter bound and
the shift of the minimizers, will be later supported with
experiments.

IV. EXPERIMENTS

The state-space planners approximate POMDP value func-
tions inaccurately by associating each action with only
one alpha vector. This approximation introduces error in
accounting for future events in value iteration. The longer
the effective planning horizon, the more error introduced by
the model inaccuracy. This section explores the effect of
reducing discount factors, thereby shortening the effective
horizons in state-space planners, to trade off between long-
term rewards and error introduced by approximation. Note
that the loss of long-term rewards is related to ‖Vγ −Vγ′‖∞
and the error introduced by approximation is ‖Vγ′ −Uγ′‖∞
in Eq. (5).

In this section, POMDP policies are evaluated by their
discounted returns, Ū =

∑∞
t=0 γ

trt, where rt is the im-
mediate reward obtained at time t and γ ≤ 1 is the true
discount factor. QMDP, UMDP, FIB policies are generated
using a lowered discount factor γ′ ≤ γ. The resulting policies
represented as alpha vectors are still evaluated by the
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(a) Mini-Hallway navigation problem.
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(b) Hallway navigation problem.
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(c) Hallway2 navigation problem.

Fig. 3. Hallway Navigation Problems: (a) Mini-Hallway. (b)
Hallway. (c) Hallway2.

discounted returns Ū with the true discount factor γ. All the
files for the experiments were obtained from pomdp.org.
Note that all figures in this experiment section share the
same axis labels; the horizontal axis is the lowered discount
factor γ′ and vertical axis is the discounted return Ū .

A. Benchmark Problems

The effect of lowering the discount factor while planning
is tested on seven benchmark problems. For each benchmark
problem, the relation between the lowered planning discount
factor γ′ and the discounted return Ū evaluated with the true
discount factor γ is estimated by averaging over 1000 Monte
Carlo evaluations, except for the large navigation problems
which require 2000 Monte Carlo evaluations.

a) Hallway navigation problems: Figure 3 shows the
results on three hallway navigation problems [5]. For exam-
ple, in Fig. 3a, QMDP planned with discount factor 0.95
has discounted return 0.318. When the planning discount
factor is reduced to 0.8, the performance of QMDP is
significantly improved, with discounted return 2.691. Note
that the horizontal line is the discounted return of a near-
optimal SARSOP policy. In the Mini-Hallway navigation,
QMDP, UMDP, and FIB have nearly the same performance,
and can compete with SARSOP by reducing the planning
discount factor γ′. Similar results can be found in the Hall-
way (Fig. 3b) and Hallway2 (Fig. 3c) navigation problems.

b) Computation time: State-space planners are known
for their low runtime. For instance, in the Hallway2 nav-
igation problem, which has the largest state space among
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(a) Maze20 navigation problem.
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Ū
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(b) MIT navigation problem.

Fig. 4. Two Navigation Problems.

the three problems, the convergence time for QMDP is less
than one second. Lowering the discount factor can further
accelerate convergence. QMDP with γ = 0.8 converges
within 0.2 seconds. On the other hand, SARSOP requires
several hours to converge.

c) Other Navigation Problems: Figure 4 shows the
results on two more difficult navigation problems. For consis-
tency with the previous problems, the true discount factor γ
is set to 0.95. Figure 4a shows results on the Maze20
problem [3] and Fig. 4b on the MIT navigation problem [14].
The former is challenging for state-space planners since it has
information-gathering actions and non-zero rewards for each
position in the maze. The latter is also challenging since
it has a larger state space. Again, reducing the planning
discount factor can improve the performance in terms of
discounted return.

d) Two other benchmark problems: Figure 5 shows
the effect of lowering the discount factor in the Shuttle
Docking problem [15] and the Network Problem [16]. For
consistency, the true discount factor is set to 0.95. In the two
problems, QMDP, UMDP, and FIB with the true discount
factor already provides near-optimal results, comparable to
the performance of SARSOP as indicated by the dashed
horizontal lines. Thus, no improvement is observed if the
discount factor is lowered while planning, which corresponds
to the case of Eq. (8) with low ε. However, as will be shown,
increased uncertainty in the observation model can result in
a significant decrease in the performance of QMDP, UMDP,
and FIB, and the improvement from lowering the discount
factor can appear again.

B. Model Inaccuracy due to Observation Noise

Two experiments are proposed to illustrate the relationship
between a lowered discount factor and model inaccuracy. A
higher approximation error is introduced due to model inac-
curacy, more improvement from lowering planning discount
factor can be observed. Each experiment is based on a bench-
mark problem: the Mini-Hallway navigation problem [5] and
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(a) Shuttle Docking Problem
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(b) Network Problem

Fig. 5. Lowered discount factor in on two benchmark prob-
lems. Since these benchmark problems are relatively easy,
the state-space planners can reach near-optimal solutions.

the Shuttle Docking problem [15]. For each problem, the
state space S, action space A, transition function T , and
initial belief distribution follow the original experimental
setup. However, the observation space Ω is set to be the
same as S, and the observation function O is

Oo
s′,a =

{
1− δ, if o = s′

δ
|Ω|−1 , otherwise (11)

If δ = 0, these experiments are simply MDPs, and thus
ε in Eq. (8) by QMDP or FIB is zero. If δ 6= 0, then
these experiments are POMDPs. In addition, as δ increases,
the model inaccuracy from the state-space planners such as
QMDP and FIB also increases, and the corresponding ε are
also magnified.

Figure 6a shows how the relation between the lowered
discount factor γ′ and discounted return Ū varies with respect
to δ on the Mini-Hallway navigation problem. Here, the state-
space planner is FIB and Ū is estimated by averaging over
1000 Monte Carlo evaluations. When δ = 0, the system is an
MDP, and the optimal result is obtained by γ′ = γ = 0.95.
However, if δ increases, the performance of FIB degrades
because it approximates the problem poorly and ε in Eq. (5)
also increases. The improvement from lowering the discount
factor thus becomes more obvious. Especially, for δ = 0.9,
with strong uncertainty from observation model, FIB with a
lowered discount factor γ′ = 0.6 can reach the performance
of SARSOP. Figure 6b reveals the same result on the Shuttle
Docking problem. The original Shuttle Docking problem
has no improvement when the planning discount factor
is lowered, as in Fig. 5a, since FIB already reaches the
near-optimal result. However, when the observation model
becomes more noisy, FIB performance degrades and the
lowered discount factor outperforms.

C. Reward Sparsity

The purpose of lowering the discount factor while plan-
ning is to reduce errors in the value function. As shown in
the theoretical analysis and Fig. 2, the error is bounded more
tightly when the reward is sparse. If the reward function is
sparse, a long effective horizon is required to see the future
rewards and solving the POMDP problem by value iteration
would introduce more errors. In this case, the effectiveness
of lowering the discount factor would be more significant.
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(a) Mini-Hallway (redesigned)
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Fig. 6. Results on redesigned problems. Labels on curves are
the values of δ in Eq. (11).
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Fig. 7. Lowered discount factor in the Hallway navigation
problem with different values of M in Eq. (10).

For example, in the hallway navigation problems, an agent
is only rewarded when it arrives at the goal position and
thus long horizons in the mazes are required. As a result, the
improvement from lowering the discount factor is significant,
as shown in Figs. 3a to 3c.

To further demonstrate this property, two experiments
based on the Mini-Hallway and Hallway navigation problems
are introduced to connect the improvement from lowering the
discount factor with the sparsity of reward. In the Hallway
navigation problem, only the goal state rewards agents by
+1.0, which means that the corresponding M in Eq. (10) is
approximately 15. For the two new scenarios in Fig. 7, an
agent receives +0.1 rewards when it finishes every one-third
and every one-fifth of the maze, respectively. That is to say,
the corresponding values of M are 5 and 3.

Figure 7 summarizes the results with policies generated
by FIB. In the original Hallway problem, there is only one
reward in the maze and the improvement from lowering the
discount factor is 0.76. When there are landmark rewards
at every one-third and every one-fifth of the maze, the im-
provement is +0.59 and +0.51, respectively. This confirms
the theoretical analysis that the improvement from lowering
the discount factor is most prominent when the reward
function is sparse. Furthermore, the optimal lowered discount
factor γ∗ is also shifted toward the true γ as M increases.
This shift is also predicted by the theoretical analysis.

The sparsity of the reward function is related to the
magnitude of landmark rewards in the maze. As the value
increases, the landmark rewards can reduce the required
horizon. This generalization of sparse reward is tested on the
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Fig. 8. Lowered discount factor in the Mini-Hallway naviga-
tion problem with different values of rmid.

Mini-Hallway problem. In the original scenario, an agent is
only rewarded by +1.0 when it reaches the goal position s13.
To reduce sparsity, an landmark reward rmid is introduced
halfway through the maze at state s6. As the value of rmid
increases, the sparsity decreases.

Figure 8 summarizes the effectiveness of lowering the
discount factor in planning versus the different values of
rmid for the Mini-Hallway problem. As the value of rmid
increases, the improvement from lowering the discount factor
is less significant. In the original Mini-Hallway problem
(with rmid = 0), the improvement is +2.3. When rmid is
set to 0.2 and 0.4, the improvements are +2.0 and +1.6,
respectively. Figure 8 clearly shows that the improvement is
most significant when the function is sparse. Furthermore, the
shift of the optimal lowered discount factor γ∗ is observed:
as landmark value decreases, the reward is more sparse, and
γ∗ approaches the true discount factor γ.

V. DISCUSSION AND CONCLUSION

The following two papers are related to our work. Petrik
and Scherrer [9] first showed that lowering the discount
factor can improve performance in the context of fully
observable MDPs. It has been proven that a lowered discount
factor can reduce loss when the model is inaccurate. Jiang
et al. [10] explored a similar phenomenon in reinforcement
learning with fully observable states (in contrast to our par-
tially observable and model-based approach). It was shown
that the policy found using a shorter effective horizon, i.e.,
lowered discount factor, can actually be better than a policy
found with the true discount factor. The authors connect
model complexity with the planning horizon as an analogy
to over-fitting in supervised learning. The longer the horizon,
the greater the risk of overfitting.

In this paper, we concentrated on exploring the phe-
nomenon in POMDP domains by providing theoretical re-
sults and testing on benchmark problems. Several sets of ex-
periments were performed to confirm the theoretical predic-
tions. However, we did not specify methods to determine the
lowered discount factor. In fact, the dependence of POMDP
performance on a lowered discount factor may be non-trivial.
A practical approach is to search between γ/2 and γ for γ′

with the assumption that the improvement is approximately
unimodal. This is computationally feasible since the discount
factor is a one-dimensional variable and the computational
cost of QMDP, UMDP, and FIB is low. QMDP and UMDP
only require O(|S|2|A|2) operations per iteration. Moreover,
as the planning discount factor is reduced, the number of
iterations required for convergence is also reduced.

Finally, this phenomenon is potentially applicable to point-
based methods as well. When the number of belief points and
their associated alpha vectors is small, point-based methods
would also have inaccuracies in their approximation, as is
the case for the state-space planners.
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